DGT2017 6-8 September 2017 Gold Coast, Australia SESSION: DGT for routine monitoring and regulatory purposes

DEVELOPMENT AND USE OF AN AUTOMATIC SEQUENTIAL PASSIVE SAMPLER FOR THE MONITORING OF DISSOLVED METALS IN MARINE ENVIRONMENTS

Benjamin MORETON¹, Franck RATTI², Jean-Michel FERNANDEZ¹, Audrey LAURENT¹

¹ AEL/LEA, 101 Promenade Laroque, 98848 Noumea New Caledonia info@ael-environnement.nc

² TECHNICAP 216, Chemin du Braousch 06320 La Turbie France technicap@wanadoo.fr

REGULATORY CONTEXT

Extensive nickel mining in New Caledonia

- 4th largest Nickel reserves (6.7 million MT, 2016)
- 5th largest Nickel producer (205 000 MT, 2016)

3 large Nickel plants in New Caledonia and numerous mining extraction sites, the majority of them juxtaposed to the coastline.

Classified as a UNESCO world heritage site in 2008

Classification requires: **'<u>Enhanced surveillance</u>** and monitoring are required to address potential impacts from fishing and <u>mining</u>**'**

REGULATORY MONITORING

Current situation in New Caledonia:

- Spot sampling = only a single concentration in time
- Periodicity of monitoring surveys = <u>3 to 12 months</u>
- Needs to be improved: Increase sample frequency = costs increase

Balance between improving sampling strategy and the cost

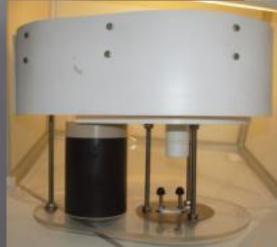
Is the solution high frequency manual passive sampling?

- Covers a longer time period smoothing out extreme concentrations
- Deployment still costly when manually immersed/recovered

Boat, driver, divers = >1 500 USD/day (12 weeks of sampling with DGT units: ~20 000 USD!)

SOLUTION : DEVELOPMENT OF AN AUTOMATIC PASSIVE SAMPLER

OBJECTIVE OF THE SAMPLER: Increase the collection frequency to improve the monitoring by reducing the logistical costs


FIRST STEP: feasibility study

Scientific prototype development: design of a system that exposes and isolates the DGT[®] devices (DGT-Research) sequentially

INITIAL TESTS:


- Motor and electronics functioning
- Seal isolation efficiency of the DGTs[®]
- Practical deployment (3 laboratory trials)



RESULTS FROM FEASIBILITY STUDIES

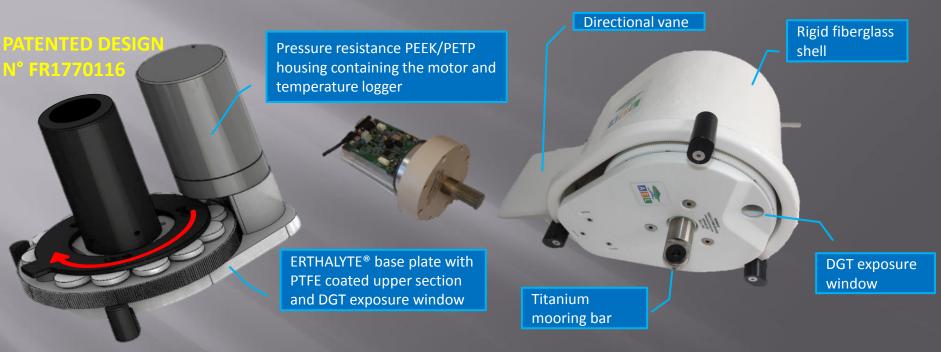
Example for Cobalt and Nickel: good correlations between the 2 techniques, respectively : R²=0,75 and R²=0,82

RESULTS FROM FEASIBILITY STUDIES

Test 3

Contaminated tank study – Concentration of dissolved metals in the DGT eluate

Sample	Cu (µg/L)	Mn (μg/L)	Ni (µg/L)
DGT blank (6 days isolation) n=3 (LQ ICP-OES)	<2,5	<1	<2,5
DGT ₁ (5 days exposure) n=1	4218	31,9	416
DGT ₂ (1 day exposure) n=1	857	13,6	93,1


No cross contamination observed in the blank

CONCLUSIONS OF THE FEASIBILITY TESTS

- Concept of the system functions effectively
- Spot sampling confirmed metals concentrations determined by DGT[®] devices installed in the sampler were coherent
- Confirmation of overall feasibility of the project

Next step development of an industrial prototype

INDUSTRIAL PROTOTYPE: MAIN COMPONENTS

- New design of the DGT[®] exposure window for a better contact with water
- Rotational mooring bar and vane added to allow the window to face the current

INDUSTRIAL PROTOTYPE: SET UP

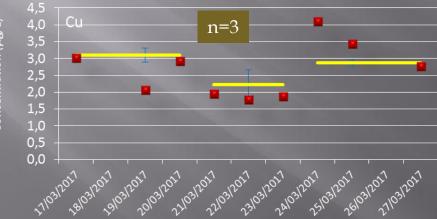
PATENTED DESIGN N° FR1770116

O-rings

DGT[®] fixed into cavities and sealed with a bung equiped with an o-ring

 Isolated with second O-ring against a PTFE layer

PTFE layer


DGT[®] device

APPLICATION: 1

MONITORING NOUMEA HARBOUR (POSTER PRESENTATION)

MONITORING CONDITIONS

- Three units placed side by side (triplicate analysis)
- Exposure time per DGT[®] = 3 days.
- Daily spot sampling (preconcentration)

Preliminary studies: Effect of the biofilm on DGT measurements (POSTER PRESENTATION)

RESULTS

- Similar concentrations determined using the two techniques
- Minor variations due to tidal effects

APPLICATION: 2

MONITORING A MINING OUTFALL

CLIENT's REQUIREMENT: enhanced monitoring of an effluent outfall
5 units deployed for 8 weeks

- Exposure time per DGT[®] = 7 days.
- Samplers placed either side of effluent diffuser
- (30, 60, 1000 metres) at 35 to 40 m depth.

RESULTS

- Observed elevated concentrations in proximity to the diffuser (30 metres)
- Background concentrations (1000 metres)

PERSPECTIVES

DEVELOPMENT OF A COMMERCIAL MODEL : **THOË**

- Exposure of triplicate DGT[®] devices (using the same or different binding layer)
- Optional increase in the number of DGT[®] devices sequentially exposable (>12)
- Sealed and streamlined housing to limit particles intrusion, ease cleaning.
- Possibility to add internal float for bottom mooring applications
- Improved software interface

2013 2016 2017

2018 13-15 MARCH 2018, LONDON, EXCEL

Thank you for listening

